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The dielectric properties of the anodically formed oxide layers on tantalum in contact with electrolyte 
were analysed by measuring the frequency and temperature dependence of the impedance. It has been 
found that the frequency dependence of  the series capacitance and resistance component  of  the 
impedance in the audio frequency range are in accordance with Young's relation. In order to explain 
such behaviour the electrical resistivity is assumed to vary exponentially with distance through the 
oxide layer. This variation can be ascribed to the occurrence of  the exponential change of  oxygen 
vacancies in the anodic layer during the growth of  the oxide layer. The activation energy was obtained 
from the temperature dependence of  the series capacitance. In the paper the unsimplified Young's  
relations have been proved to be K - K  transformable. 
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series capacitance (F) e 
series resistance (f2) p(y) 
frequency of applied signal (Hz) p(0) 
integration variable of frequency (Hz) p(d) 
area (cm 2) T 
characteristic length (cm- ~ ) k 
oxide layer thickness (cm) q~ 
distance through oxide (cm) z 
slope of linear part of 1/Cs against l o g f  Res 
plot (Equation 5) 

slope of linear part of R s against l / f  plot 
(Equation 3) 
relative permittivity of oxide layer 
resistivity at distance y (f~cm) 
resistivity on position y = 0 (fl cm) 
resistivity on position y = d (f~ cm) 
absolute temperature (K) 
Boltzmann constant (eV K- 1 ) 
activation energy (eV) 
complex variable, z = x + iy, i = ~f~-I 
residue 

1. I n t r o d u c t i o n  

A study of the electrical properties of tantalum pent- 
oxide is of great interest because of its application in 
the electronic industries [1]. Tantalum oxide may serve 
as an alternative dielectric to SiO2 for metal/oxide/ 
semiconductor (MOS) structures [2, 3] due to its high 
relative permittivity, thus obtaining a greater storage 
capacitance for the same thickness of the oxide layer. 
Oxide layers anodically formed on tantalum are gener- 
ally non-stoichiometric and are amorphous in structure 
[4]. The structure and non-stoichiometry essentially 
affect the electric properties of the oxide layers on 
tantalum. Information on the dielectric properties of 
the metal/oxide/electrolyte (MOE) structures can be 
obtained by impedance measurements. The results of 
impedance measurements are generally expressed in 
terms of series resistance, R~, and series capacitance, 
Cs, which are frequency dependent in most electro- 
chemical systems. In order to explain the frequency 
dependence of the real and imaginary component of 
impedance Young [5] has derived equations showing 
the dependence of Rs and 1/Cs on frequency on 

the basis of a model in which the resistivity varies 
exponentially across the oxide layer, i.e. p ( y ) =  
p(0) exp (y/K). 

The equivalent circuit representing the layer con- 
sists of an infinite number of parallel RC units con- 
nected in series. Young has ascribed the exponential 
variation of resistivity to the deviation from the 
stoichiometry of the niobium oxide. Young's relation 
between the resistance and frequency is given by 

18 x 10"K [-arctan// _fe, p(d) 
Rs(f) - k \ 1 8  • lo" J 

- a r c t a n  18 • 1011 (1) 

and between the capacitance and frequency by 

f r, p(d) 
1 + 

1 _ ~z • 18 • 1011Kln 18 • 10  tl 

f e.p(O) 
Cs(f) aA 1 + 18 • 10 ~1 

2 yl 
(2) 
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Assuming that the resistance is low on one side and 
high on the other side of the oxide, i.e. p(d) >> p(O), 
Equations 1 and 2 may be simplified as follows: 

Rs = aR(1/f) + b (3) 

or 

log(R~ - b) = logaR -- l o g f  (4) 

A conversion of Equation 2 to a logarithm of base 10 
yields 

Cs - ac log f +  log 18 x ]-011 (5) 

The additive constant b in Equation 3 is mostly 
associated with the electrolyte resistance. Young's 
expressions, (3) and (5), state that the resistance is 
a linear function of the reciprocal frequency and 
capacitance is a linear function of the logarithm of 
frequency. Theoretically, the ratio of the respective 
slope is 

ac - 9.2 (6) 
OR 

The fact that the values ac/a R, which were experi- 
mentally obtained on the oxide-coated Nb electrode, 
were in agreement with the theoretical values (Equation 
6) supports Young's model. Winkel and de Groot  [6] 
had another theoretical approach to describe the 
impedance behaviour on oxide-coated Ta and A1 elec- 
trodes and they obtained the same expressions. These 
authors assumed the distribution of relaxation times 
in the oxide. The Equations (3) and (5) were found to 
describe the electrode impedance on oxide-coated Ti 
electrodes [7], on anodized A1 in nonaqueous medium 
[8], on the passive layer on iron in contact with CrO3 
solution [9, 10], on polished TiC electrodes under 
anodic polarization [11], on oxide-coated Pt [12] and 
on thermally grown oxide films on iron [13]. The 
results presented in the papers [8-13] were interpreted 
on the basis of Young's or Winkel and de Groot 's  
models. Dutoit et al. [14] have established that the 
relations 3 to 5 are also valid for nearly ideally polaris- 
ible semiconducting electrodes: CdS, CdSe and TiO2 
monocrystals. The same relations were obtained with 
n-  and p-type GaAs [15]. These authors [14, 15] also 
explained the simple Equations 3 and 5 by means of a 
model where the distribution of the time constant is 
associated with the dielectric relaxation phenomena in 
the double layer at the semiconductor/electrolyte 
interface. 

In this paper, the a.c. electrical properties of the 
anodically formed layers on tantalum in contact with 
an electrolyte will be discussed. On the tantalum/oxide 
layer/electrolyte system the impedance was measured 
by comparing it with the series combination of capaci- 
tance, C, and resistance, R, in the bridge. 

2. Experimental details 

Electrodes were prepared from spectroscopically clean 
tantalum rods (Johnson-Matthey), 4.5 mm dia., which 

were sealed into glass tubes with epoxy resin. The 
exposed disc faces were polished with Buchler metalo- 
graphic powder and degreased in trichlorethylene. 
The tantalum samples were anodized at a constant 
current density, Jr = 1 m A cm  -2 up to a formation 
voltage, Ur = 5 V and 40 V in 1.0 mol dm 3 Na2 SO4 
solution at room temperature. The samples were stab- 
ilized for 48 h at the formation voltage. The oxide 
layer thicknesses (for the constant current stage) were 
computed from tantalum anodization constant which 
amounts to 1.75nmV -1 [16]. The increment of  30% 
[17] of the thickness, which is due to the relatively long 
soak time, was added to the value computed from the 
anodization constant, so that the final thicknesses 
of the oxide layers were l l . 4 n m  and 91nm. The 
bridge method was used to measure the impedance 
of the Ta/oxide layer/electrolyte system. The super- 
imposed a.c. signal was obtained using a Hewlett- 
Packard 3300A function generator. The voltage at the 
bridge ends amounted to 10mV. The impedance was 
measured within a frequency range between 250Hz 
and 25 kHz and at temperatures ranging from 274 K 
to 314K without d.c. polarization. 

3. Results and discussion 

The capacitance and resistance of  anodically formed 
layers on tantalum for Uf = 5 V and 40 V are presented 
as 1/Cs against l o g f a n d  Rs against l / f  with tempera- 
ture as parameter (Figs 1-4). Within the frequency 
range 250Hz-10kHz  the reciprocal capacitance 
increases linearly with the logarithm of  frequency 
(Figs 1 and 2), and the resistance increases linearly 
with the reciprocal frequency (Figs 3 and 4) at all 
temperatures, which is in agreement with relations (3) 
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Fig. 1. Reciprocal series capacitance against logarithm of frequency 
for various temperatures in open circuit. Oxide layer formed with 
j = lmAcm 2 up Uf = 5V in 1.0moldm -3 Na2SO 4 solution. 
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Fig. 2. Reciprocal series capacitance against logarithm of frequency 
for various temperatures in open circuit. Oxide layer formed with 
/ = 1 mAcm 2 up U/= 40V in 1.0moldm 3 Na2SO4 solution. 

and (5). The slopes a c and aR (Equations 3 and 4) were 
determined from the line o f  linear regression. The 
ratios o f  temperature dependent  slopes ac/aR are 
shown in the inset o f  Figs 1 and 2 and are in agreement 
with Young ' s  theoretical value (Equat ion 6). To estab- 
lish the influence o f  the electrolyte resistance for each 
temperature,  a linear part  o f  the (Rs against l / f )  plot 
was extrapolated at 1If = 0 and the values obtained 
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Fig. 3. Series resistance against reciprocal frequency for various 
temperatures in open circuit. Oxide layer formed withj = 1 mAcm ~ 
up U l = 5V in 1.0moldm 3 Na2SO4 solution. 
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Fig. 4. Series resistance against reciprocal frequency for various 
temperatures in open circuit. Oxide layer formed withj = lmAcm-: 
up ~ = 40V in 1.0moldm 3 Na2SO4 solution. 

for the electrolyte resistance, Rel , were subtracted 
from the measured values R,. The results are presented 
as log (R, - Rel) against log f i n  Figs 5 and 6. At  all 
temperatures,  this plot represents a linear relationship 
in agreement with Equat ion 4. The slopes are tem- 
perature independent for both thicknesses o f  the oxide 
layer and the values (R, - Re~) at a certain frequency 
vary negligibly with temperature. The slopes are - 1 
which is in excellent agreement with Equat ion 4 (see 
inset o f  Figs 5 and 6). 

Considering the problems of  the frequency depend- 
ence of  the electrode impedance. Van Meirhaeghe 
et al. [18] point  out that  under certain conditions, the 
frequency dependence of  the real and imaginary com- 
ponents  o f  the electrical impedance is sometimes 
correlated by the Kramer s -Kron ig  ( K - K )  relation 
[19, 20]. In the case of  impedance defined by 

1 
z : R S - i - -  ( 7 )  
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Fig. 5. Logarithm of series resistance against logarithm of fre- 
quency for various temperatures in open circuit. Oxide layer formed 
with l mAcm -2 up ~ = 5V in 1.0moldm -3 Na2SO 4 solution. 
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Fig. 6. Logarithm of series resistance against logarithm of fre- 
quency for various temperatures in open circuit. Oxide layer formed 
withj = 1 mAcm -2 up ~ = 40Vin 1.0moldm -3 Na2SO 4 solution. 

the Kramers-Kronig or Bode relations [18, 21] are 
often presented in various forms, one of them being 

1 c~ R~(x) 
4 f  2 dx  (8) 

C~(f)  - Jo x 2 + /~  

and 

1 ~ 1 / C ~ ( x )  dx  
R~( f )  - Rs(o~) = -~ fo x 2 - f :  (9) 

/ 
/ 

/ 

0 r 
log fextr, 

log f 

Fig. 7. The shape of the curve 1/C~ against log fin a wide range of 
frequencies. 

where j~ denotes the Cauchy principal value of the 
integral. K - K  relations are a purely mathematical 
result and can be obtained from the properties of  
continuous functions of  the complex variable. To be 
applicable to an electrical quantity (such as imped- 
ance) the quantity must be causal, linear, stable and 
finite at all frequencies including f = 0 and f = o~. 
The consequence of the K - K  relations is such that if 
the real part of  the impedance is known in the entire 
frequency range, its imaginary part is uniquely deter- 
mined, and when the imaginary part is given, the real 
part is completely determined up to the additive con- 
stant R(oo). 

Van Meirhaeghe et al. [18] have shown that by 
inserting Equation 3 into the integral Equation 8, the 
solution is Equation 5 if R~ is assumed to tend to a 
constant when f----+ 0; otherwise an infinite value 
of the integral is obtained. However, if Young's 
Equation 1 is inserted into the integral Equation 8, the 
solution is: 

l _ 4 f : B  I f  ~ arctan (Dx) 
Cs ( f )  x 2 _ f2  dx  

- Io arctanx 2 + (~2x) d x l  

~8 in F 1 + D2/2 7 (10) 
L 1 + E2f 2 j 

where 

18 x 101JK 
B - (11) 

eA 

~p(d) ~p(o) 
D - 18 • 1011 and E -  18 x 10 it (12) 

Inserting Equation 2 into the Equation 9 gives: 

B I f o l n ( 1  + D2f  2) 
R~( f )  Rs ( o~ ) 7 a x 2 _ f2  dx  

- i o l n ( 1 2 + - _ E 2 f 2 )  l f 2  dx 

B 
= 7 [arctan (Dr )  - arctan (Ef)J 

(13) 

The integrals on the left hand side of  Equations 10 and 
13 respectively, have been solved by applying 
Cauchy's residue theorem (see Appendix, Equations 
A-7 and A-15). 

For low frequencies, provided that o(d) >> p(O), 
Equation 2 is of  the form 

1 
- ~B In (1 + D2f 2) (14) 

C~(f)  

Since (1 + D 2 f  2) > 1 always when f ~0, the 
linear part of the plot 1/Cs against l o g f  becomes 
nonlinear, approaching asymptotically to zero or 
some other constant value if there is a capacitance 
connected in series with the layer capacitance where 
Young's relations (Equations 1 and 2) are valid 
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(Fig. 7) [22]. Inserting Equation 14 into Equation 9 for 
the limiting condition f , 0, a simple expression is 
obtained 

R~(0) -- R~(oo) = _B~oln(1 + D2x 2 ) _  dx (15) 13 
/'C x -  

and hence -~ 
I 7  

O 

& ( 0 )  - R ~ ( ~ )  = ~ - p ( d )  (16) 
. / t  

o_ 

Integral 15 is also solved by using Cauchy's residue ~ 12 
theorem (see Appendix, Equation A-20). From 
Equation 16 it follows that if the impedance measure- 
ments are carried out in a sufficiently wide frequency 
range and if the capacitance component behaves in 
accordance with Equation 14, the resistance com- 
ponent for the limiting condition f ~ 0 tends to a 
constant value (Equation 16). Equating the left hand 11 
side of Equation 5 to zero it follows that [10] 

1 ~p(d) 
- ( 1 7 )  

f~• 18 X l 0  IL 

o r  

logt,8 x 1~ ) 
= - -  l og fex t  r (18)  

8 

The term f~x~r in Equation 17 can be obtained by 
extrapolating the linear part of the 1/Cs against log f 
plot at 1/C~ = 0 (Fig. 7). 

Such an analysis was carried out on the data shown 
in Figs 1 and 2. The linear part was extrapolated at 
1/C~ = 0 for each temperature and the resistivity, 
p(d), was calculated using Equation 17. A value 
of e = 27.8 [23] was used for the permittivity of 
tantalum oxide. The logarithm of resistivity was plotted 
against I/T for both oxide layer thicknesses (Fig. 8). 
This plot yields straight lines and, from the slopes, the 
activation energy was calculated by the Arrhenius- 
type expression 

k d log [p(d)] 
�9 - (19) 

0.4343 d [ l / r ]  

The activation energy was 0.9 eV for the thinner layer 
and 0.52 eV for the thicker layer. 

The results presented in this paper are consistent 
with the assumption that in the anodic oxide layers on 
tantalum, the conductivity is exponentially dependent 
on the position in the oxide layer, and that it decreases 
from the maximum value which is most probably 
achieved on the tantalum/oxide layer interface until it 
reaches the lowest value on the oxide/electrolyte inter- 
face. The exponential variation of the conductivity 
may be associated with the existence of the exponen- 
tial distribution of the oxygen vacancies in the anodic 
oxide layer, which occurred during the growth of the 
oxide layer. 

Capacity measurements have revealed that the 
capacitance is potential independent. This means that 
a possible space charge layer has a thickness at least 
larger than the film itself. K-K transformability of 
Young's relations (Equations 1 and 2) does not favour 

' i ' i ' 3.2 3 3 /. 35 3 6 3.7 

103/T (g) 

Fig. 8. Logarithm of specific resistivity against reciprocal tempera- 
ture for oxide layers formed w i t h j  = l m A c m  -2 up ~ =  5 and 
40V in 1.0moldm 3 Na2S Q solution. 

15 

1/. 

this model as opposed to others, since these relations 
are a purely mathematical result, which does not 
reflect any other physical property or condition of the 
electrochemical system. It would therefore be possible 
to suppose an alternative model which could be 
explained by a distribution of relaxation times (DRFs) 
[6]. The analysis of relaxation processes in dielectric 
materials often starts from the empirical Cole-Cole 
response function which gives a relationship between 
dielectric permittivity and relaxation times ([24], Equa- 
tion 5). This relationship implies the independence of 
phase angle (or loss angle) on frequency. Experimental 
results show that Rs varies as 1If in the audio fre- 
quency range (Figs 3 and 4) so that the phase angle 
can be constant only if Cs is frequency independent. 
Results in Figs 1 and 2 show that this is not the case. 

4.  C o n c l u s i o n s  

This study of the dielectric properties of the anodic 
oxide layers on tantalum in contact with electrolyte 
shows that the resistivity depends exponentially on 
position in the oxide layer. The electric resistivity is 
related to the local deviation from tantalum oxide 
stoichiometric compositon. The conductivity is ther- 
mally activated and the activation energy amounts to 
0.9 eV for the thinner layer and 0.53 eV for the thicker 
layer. These values are in close agreement with the 
activation energy values obtained on the heat-treated 
anodic layers on tantalum [25, 26]. Young's relations 
(Equations 1 and 2) describing the behaviour of the 
capacitance and the resistance component of the 
impedance in the entire frequency range are proved to 
be K-K transformable. 
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Appendix 

The integrals on the left hand side of Equations 10, 
13 and 15 are solved by applying Cauchy's residue 
theorem. The integration is made along the semicircle 
which lies in the upper half of the complex plane and 
whose diameter is a part of the real axis (Figs A-l,  A-2 
and A-3). The simple poles x = __+fand x = 0 which 
lie on the real axis {z[ Im z = 0} are excluded from 
the region of integration so that the functions under 
consideration are analytic everywhere within the 
closed contour C, and the contour integral along C 
is thereby zero. The interal along the semicircle at 
infinity is also zero. 

To compute the integral 

fo a rc tanx  dx f >  0 (A-l) 
x(x 2 __ f2) 

the contour from Fig. A-1 and expression given in [27] 
(p. 122) are used 

~.~ f (x )"  arctan x dx = 
dU 

- =  ~ Res f (z)  In (i + z) 
k = l  z=zk 

~ Res ln ( i  + z) 
z=pk k=l 

(A-2) 

where zk is a finite number of singular points in the 
region {zl Im z > 0}, and pa. are simple poles on the 
real axis {z] lm z = 0}. 

The function 
1 

f (z)  - z(z 2 _ f 2 )  

on the real axis {z[ Im z = 0} has three simple poles, 
Pl = 0, P2 = - f  and P3 = f ,  the residues of which 
a r e  

Res In (i + z) ~ (A-3) 
z=0 7 ?  _--fT~ - i 2 f ~  

ln( i  + z) ln( i  + f )  
Res - (A-4) 
:=f z ( f  - f2) 2f2 

In (i + z) In (i + f )  
Resf z(z2 _ f2) - 2f2 (A-5) 

The first sum on the right hand side of expression 
(A-2) is zero because the function is analytical. In 
other words, it does not involve singular points ze in 
the region {zl Im z > 0}. 

By inserting (A-4) up to (A-5) into the expression 
(A-2) we obtain 

fo arctan x ~z In (1 + f2)  
X(X 2 - -  .f2~ dx - 4 f2 (A-6) 

o r  

rc In (1 + c2f 2) 
}Oe~176 X( x2arctan- (CX)f~) dx - 4 f 2  ....... 

(A-7) 

where c is a constant. 

A-1 Y 

- ~ ,  x - - f  x2--0 xa--f + ,.,=, x 

A-2  

A-3 

-~" x=- - f  - 

!Y 

-i 

~y 

,-i 

x 

X 

The integral 

f o l n  (1 + x 2) 
x 2 - ~ F  dx f >  0 (A-8) 

can be solved by splitting the numerator of the inte- 
grand into partial fi'actions and using the property of 
the even function, i.e. f ( x )  = f ( - x ) ,  yields 

ln(1 + x 2) ln[(x + i ) ( x -  i)] 
x 2 _ f 2  x 2 _ f 2  

21n(x  + i) + ire 
= x 2 _ f2 (A-9) 

Inserting the left hand side of expression (A-9) into 
(A-8), we obtain 

f o l n ( 1  + x 2) dx = 2 ~ ~ 1 7 6  + i) dx 
X 2 __  f 2  : u  X 2 - -  f 2  

dx c:o 
+ ir~ 

J '0 X 2 - -  f 2  

( A - 1 0 )  

= 0  

To solve the first integral on the right hand side in 
(A-10), the contour on Fig. A-2 and expression given 



774 A. RESETI{7 AND B. JARIC 

in [27] (p. 124) are used 

_c 
2 f o f ( x )  l n ( i  + x) dx = 2i~ Z R e s f ( z )  ln( i  + z) 

k = l  Z=Zl~ 

+ ire L R e s f ( z ) I n  (i + z) (A-11) 
k =  ] " =P k  

The function 

1 
f ( z )  - x 2 _ f 2  

on the real axis {z] Im z = 0} has two single poles, 
Pl = f and P2 = - f ,  the residues o f  which are 

ln ( i  + z) l n ( i  + f )  
Res:=r x ~ -~ 7fi ~ - 2 f  (A-12) 

ln ( i  + z) I n ( i - f )  
Res xZ f 2  - (A-13) 
z = f  - -  2 f  

Since the function z] ~ In (i + z) is analytic in the 
upper  half  plane {zl Im z > 0} because the singular 
point  z = - i is outside the contour ,  the first sum on 
the right hand  side o f  Equat ion  A-11 is zero. By 
inserting Equat ions  A-12 and A-13 into Equat ion 
A-I  1 we obtain 

f ?  In (1 _+fx 2) dx n x2 _ = ~ a r c t a n f  (A-14) 

or 

f o l n ( 1  - c2x 2) n 
x 2 f2  dx = ~ arctan (cx) (A-15) 

The integral 

g~ In (1 - x 2) 
dx (A-16) J0 x 2 

is solved in the same way as integral A-8. The inte- 
grand is an even function, that  is: 

f ~ . l n ( l x  2+ x 2) dx = 2 ~ o  ln(ix2 + X) dx 

dx 2 
+ 

J~o x 2 (A-17) 

= 0  

To solve the first integral on the right hand side 
in Equat ion A-17 the contour  f rom Fig. A-3 and 
Equat ion A-11 are used. 

The function 

1 
f ( z )  - 

Z 2 

on the real axis {zl Im z = 0} has a pole o f  order two, 
p = 0, and its residue is 

in (i + z) 1 
Resz=0 z 2 - i (A-18) 

By inserting Equat ion A-18 into Equat ion  A-11 it 
follows that  

f o  In dx = ~ (A-19) 
(1 + x 2 ) 

x 2 

f o l n ( 1  + c2x 2) 
x2 dx = ere (A-20) 
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